It looks like you're using Internet Explorer 11 or older. This website works best with modern browsers such as the latest versions of Chrome, Firefox, Safari, and Edge. If you continue with this browser, you may see unexpected results.
獎項
學生作品
所有作品
學院與部門
人文社會科學院
李兆基商業管理學院
教育及語文學院
護理及健康學院
科技學院
李嘉誠專業進修學院
圖書館
學生事務處
作品集
關於
close
×
Search
首頁
S&T Best Computing Projects
A hybrid algorithm based on backpropagation with magnified gradient function guided by adaptive particle swarm optimization in neural network training
/sw/zh-hant/islandora/object/stcompfyp%3A111/datastream/OBJ/view
作品集
S&T Best Computing Projects
詳情
識別號
stcompfyp:111
題名
A hybrid algorithm based on backpropagation with magnified gradient function guided by adaptive particle swarm optimization in neural network training
作品類型
Final Year Project/Work
系列 / 集 / 庫
S&T Best Computing Projects
創建者
Lui, Wing On (creator)
Ng, Sin Chun Vanessa 吳倩珍 (supervisor)
學院 / 部門
School of Science and Technology (S&T)
課程
Bachelor of Science with Honours in Computing
日期
2012
摘要
This project aims to design a hybrid algorithm of MGFProp and APSO and investigate its performance, in terms of learning speed and global optimality. In this project, we use APSO to perform global searches for good starting positions for MGFProp to perform local searches.
資料類型
PDF
語言
English
資料描述
1 page.
獎項
1st runner-up (undergraduate section), Student Paper Contest, 2012 (IEEE(HK), Institute of Electrical and Electronics Engineers Hong Kong Section)
關鍵字
neural networks; algorithms; Backpropagation (BP) with magnified gradient function (MGFProp); Adaptive particle swarm optimization (APSO); Magnified gradient function (MGF)
存取限制
Public Access
固定連結
https://repository.lib.hkmu.edu.hk/sw/islandora/object/stcompfyp:111
Sorry, you need to enable JavaScript to visit this website.